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Abstract
This paper is devoted to investigating non-equilibrium phase transitions to
an absorbing state, which are generically encountered in reaction–diffusion
processes. It is a review, based on Canet, Delamotte, Deloubrière and
Wschebor (2004 Phys. Rev. Lett. 92 195703); Canet, Chaté and Delamotte
(2004 Phys. Rev. Lett. 92 255703) and Canet et al (2005 Phys. Rev. Lett.
95 100601), of recent progress in this field that has been allowed by a non-
perturbative renormalization group approach. We mainly focus on branching
and annihilating random walks and show that their critical properties strongly
rely on non-perturbative features and that hence the use of a non-perturbative
method turns out to be crucial to get a correct picture of the physics of these
models.

PACS numbers: 05.10.Cc, 05.70.Fh

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Our understanding of equilibrium critical phenomena has largely benefitted from the success of
perturbative renormalization group (RG) techniques and from conformal symmetry properties
in two dimensions. Unfortunately, this success story has not spread out to non-equilibrium
systems, though the latter are far more common in nature. Indeed, the study of phase transitions
between non-equilibrium steady states has taught us that critical phenomena or generic scale
invariance turn out to be much richer far from thermal equilibrium—where detailed balance
relations are violated—than in equilibrium statics or even near-equilibrium dynamics.

However, despite considerable efforts, the very ingredients settling the universality
classes out of equilibrium remain on a fragile footing. The problem originates mostly in
the absence of an effective free energy functional that would allow us to straightforwardly
classify the universal behaviours in terms of symmetries and interactions. And even when
such a functional exists—which occurs for reaction–diffusion processes or for Langevin-type
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dynamics—analytical progress turns out to be difficult. On the one hand, models with Langevin
dynamics cannot be conformal invariant. On the other hand, the efficiency of standard RG
approaches is hindered by the fact that first, critical dimensions, when they are identified,
happen to lie far from the physically interesting ones and furthermore, no calculations are
available above two-loop order, which prevent from resorting to powerful re-summation
techniques. In this context, any theoretical tool that can overcome the previous pitfalls
is valuable and the non-perturbative renormalization group (NPRG) stands as a promising
candidate [4]. Indeed, this method has led to great successes for systems at equilibrium during
the last decade, appearing as a well-adapted tool to tackle strong coupling problems [4, 5].
Moreover, the NPRG formalism has been recently extended to non-equilibrium systems [1]
and has given rise to important progress in the field of reaction–diffusion processes, unveiling
genuinely non-perturbative effects [1–3], which we review in this paper.

This paper is organized as follows. In section 2, we give an overview of reaction–diffusion
processes and recall their field theoretical formulation. In section 3, we briefly introduce the
NPRG formalism generalized to non-equilibrium systems and we derive the flow equations
related to reaction–diffusion processes, before focusing on specific models. Some results on
the universal properties of directed percolation (DP) are first reviewed in section 4, and the
remainder of the paper (section 5) is devoted to the study of branching and annihilating random
walks (BARW), which split into two categories, namely the ‘odd’ and ‘even’ BARW.

2. Reaction–diffusion processes

Reaction–diffusion processes constitute simple models that allow us to gain some insights
in non-equilibrium critical phenomena [6]. They are defined by a set of microscopic rules
that govern the dynamics of a species of particles A. These particles randomly diffuse at a

rate D and undergo some reactions, typically birth A
σm−→ (m + 1)A and death kA

λk−→ ∅

processes. From these competing interactions emerges at long time a stationary state whose
nature depends on the reaction rates λk and σm. Either all particles eventually vanish, leaving
an empty state where all stochastic fluctuations cease and which is therefore called ‘absorbing’,
or the density eventually saturates to a finite average value yielding an ‘active’ state where
the dynamics constantly generates density fluctuations. The active and absorbing states are
separated by a continuous phase transition [6].

A large range of the absorbing transitions encountered in reaction–diffusion processes
fall into the DP universality class [7], which stands as the most prominent one. It has led
to a famous conjecture in the early eighties by Janssen and Grassberger [8] stating that a
continuous transition to an absorbing state driven by a one-component order parameter will
generically fall into the DP universality class (provided there is no additional symmetry or
quenched disorder). The DP model, which corresponds to the rules

A
σ−→ 2A, 2A

λ−→ ∅, A
µ−→ ∅, (1)

therefore plays a paradigmatic role, as the counterpart of the Ising model for equilibrium
statistical physics.

Reaction–diffusion processes naturally lend themselves to Monte Carlo simulations,
which have indeed largely contributed to our understanding of these processes (see [6, 9] for
reviews). On the other hand, the simplest analytical approach is to device a rate equation for the
time-dependent average density n(t), assuming the various reactions to occur proportionally
to the concentration of reactants. For instance, for the DP processes (1), this yields

∂tn(t) = (σ − µ) n(t) − 2λ n(t)2. (2)
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Figure 1. Time evolution of particles on a one-dimensional lattice, starting from either a uniformly
distributed initial configuration (top row) or a seed particle (bottom row), for the DP model
(endowed with the dynamical rules (1)) from [6]. In this model, the stationary states (respectively
absorbing on the left-hand side and active on the right-hand side) are reached exponentially fast in
time, and are separated by a critical state (middle column) where both time and space correlation
lengths diverge, resulting in an algebraic decay of the density.

Equation (2) entails a mean-field type of approximation since the density correlations are
neglected—the joint probability of finding two particles at the same position has been
factored. Equation (2) is readily solved. It exhibits two stationary solutions na = 0 and
ns = (σ − µ)/(2λ), whose stability depends on the sign of the ‘mass’ � = σ − µ.
If � < 0, the density decreases to the absorbing solution na , whereas it saturates to
the active solution ns for � > 0. The explicit solution for the time-dependent density
n(t) = n0ns/[n0 + (ns − n0) exp(−�t)] shows that both asymptotic states are reached
exponentially fast in time. The relaxation time �−1 diverges when σ = µ causing an
algebraic decay of the density which corresponds to the critical state. The DP absorbing phase
transition is illustrated in figure 1 [6], which represents the time evolution of particles on a
one-dimensional lattice for increasing values of � (see caption).

Absorbing phase transitions can be characterized by a set of critical exponents, typically:

ns ∼ (p − pc)
β (3)

ξ⊥ ∼ |p − pc|−ν⊥ (4)

ξ‖ ∼ |p − pc|−ν‖ , (5)

where z = ν‖/ν⊥ embodies the dynamical exponent, which represents the anomalous scaling
between space and time.

From rate equations such as (2), one can simply work out the—d-independent—values
of the critical exponents at mean-field level (for instance for DP β = 1, ν⊥ = 1/2 and
z = 2 [6]).

2.1. Field theory

The mean-field picture holds as long as the density remains homogeneous—short-range
correlated—enough in the system so that the role of space and time fluctuations is indeed
negligible, which is generally justified in high dimensions. However, the reaction–diffusion
processes under scrutiny are the so-called diffusion-limited, which means that the diffusion
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is not efficient enough to compensate the effect of reactions that locally alter the density
distribution and hence invalidate the mean-field approximation. A finer analysis therefore
requires a systematic incorporation of spacio-temporal fluctuations, which can be achieved
through the construction of a field theory.

A field theory to describe reaction–diffusion processes can be derived following a well-
known formalism due to Doi and Peliti [10]. The starting point is the master equation,
which describes the time evolution of the probability distribution P({ni}, t) of the occupation
numbers ni of the sites i of a lattice—assuming no occupation restriction. The idea is to
write the change in the occupation numbers on each site by means of creation and annihilation
operators. Upon introducing Fock states |{ni}〉 to represent the configurations of the lattice,
and a formal state vector |�(t)〉 = ∑

P({ni}, t)|{ni}〉, the master equation can be recast
into a Schrödinger-like equation for the state vector ∂t |�(t)〉 = −H |�(t)〉. Then, resorting
to coherent-state path integrals as in quantum mechanics, one can construct a functional
integral Z[φ, φ̂] = ∫

DφDi φ̂ exp(−S[φ, φ̂]), which captures exactly (up to the continuum
space limit) the microscopic stochastic fluctuations [10, 11]. The time-dependent statistical
averages of observables—which are necessarily mere functions of the occupation numbers—

can then be computed from Z . For the general processes A
σm−→ (m + 1)A and kA

λk−→ ∅,
this procedure yields [12]

S[φ, φ̂] =
∫

ddx dt{φ̂(x, t)(∂t − D∇2)φ(x, t)

− λk(1 − φ̂(x, t)k)φ(x, t)k + σm(1 − φ̂(x, t)m)φ̂(x, t)φ(x, t)}. (6)

The diffusion is encoded in the kinetic part and stands as the Gaussian (quadratic) theory, which
corresponds to the Brownian motion. All the reactions give rise to potential interaction terms.
The action (6) can then root field theoretical treatments, and in particular NPRG methods.
This action indeed underlies in the following the investigation of various reaction–diffusion
processes, namely DP and BARW models. Before presenting these analyses (in sections 4
and 5), we first give a brief overview of the NPRG techniques.

3. Non-perturbative renormalization group out of equilibrium

We do not intend to detail here the implementation of the NPRG, but rather set out its principle
(and refer to [4, 5] for reviews). This formalism relies on Wilson’s RG idea [13], which
consists in building a sequence of scale-dependent effective models, that interpolate smoothly
between the short-distance physics at the (microscopic) scale k = 
 and the long-distance
physics at the scale k = 0, through progressively averaging over fluctuations. Rather than
expressing—as in the original Wilsonian formulation—the flow of effective Hamiltonians for
the slow modes, one can work out the flow of effective ‘free energies’ �k for the rapid ones,
following [5, 14]. �k thus only includes fluctuation modes with momenta |q| � k. At the
scale k = 
, no fluctuation is yet taken into account and �
 coincides with the microscopic
action S, while at k = 0, all fluctuations are integrated out and �0 is the analogue of the Gibbs
free energy � at thermal equilibrium, in that it encompasses the long-distance properties of
the system. To construct �k , one needs to freeze the slow modes. This is achieved by adding
a scale-dependent mass-like term to the original action [1, 5, 15]:

�Sk[φ̂, φ] =
∫

x,t

φ̂(x, t)Rk(∇2, ∂t )φ(x, t), (7)

where the cutoff function Rk behaves as Rk(q
2, ω) ∼ k2 (in Fourier space) for small

momenta |q| � k—so that the slow modes are decoupled—and Rk vanishes for large
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momenta |q| � k—so that the rapid ones remain unaltered. The ‘partition functions’
Zk[j, ĵ ] = ∫

DφDi φ̂ exp(−S − �Sk +
∫
jφ +

∫
ĵ φ̂) therefore become k-dependent. �k is

obtained through the Legendre transform of logZk[j, ĵ ]:

�k[ψ, ψ̂] + logZk[j, ĵ ] =
∫

jψ +
∫

ĵ ψ̂ − �Sk[ψ, ψ̂] (8)

and is a functional of the conjugate fields ψ = δ logZk/δj and ψ̂ = δ logZk/δĵ . Note that
the last term in equation (8) ensures that �k has the proper limit at k = 
: �k=
 ∼ S [5, 15].
An exact functional differential equation governs the RG flow of �k under an infinitesimal
change of the scale s = log(k/
) [1, 5]:

∂s�k = 1

2
Tr

∫
q,ω

∂sR̂k

(
�̂

(2)
k + R̂k

)−1
, (9)

where R̂k is the symmetric, off-diagonal, 2 × 2 matrix of element Rk (in Fourier space) and
�̂

(2)
k [ψ, ψ̂] the 2 × 2 matrix of second derivatives of �k with respect to ψ and ψ̂ . Obviously,

equation (9) cannot be solved exactly and one usually devices an ansatz for �k . However, as
the approximations used do not rely on the smallness of a parameter, the approach remains
non-perturbative in essence. In particular, it is not confined to weak-coupling regimes or to
the vicinity of critical dimensions and is therefore suitable to overcome the usual perturbative
RG schemes.

Since the critical physics corresponds to the long distance (q → 0) and long time
(ω → 0) limit, a sensible truncation consists in expanding �k in powers of gradients [14] and
time derivatives. Retaining only the leading order in derivatives, the most general ansatz for
�k related to the field theory (6) writes [1]

�k(ψ, ψ̂) =
∫

ddx dt{ψ̂(x, t)[Dk[ψ, ψ̂]∂t − Zk[ψ, ψ̂]∇2]ψ + Uk[ψ, ψ̂]. (10)

The effective potential Uk encompasses all possible reactions. The kinetic renormalization
functions Dk and Zk of the diffusive part account for the anomalous scalings of the fields
and of time. Indeed, the anomalous dimension η of the fields and the dynamic exponent z

are defined such that at criticality, ψψ̂ ∼ kd+η and ω ∼ kz, respectively [16]. It follows that
ηk = −∂s ln Dk and zk = 2 + ηk + ∂s ln Zk , the critical exponents η and z corresponding to the
(k-independent) fixed point values of ηk and zk .

The flow equations for the potential Uk and the renormalization functions Zk and Dk

have been established for generic reaction–diffusion processes in [1]. Different levels
of approximation can be implemented. The simplest one, the so-called local potential
approximation (LPA), consists in neglecting the kinetic renormalizations, i.e. in setting
Zk = Dk = 1, upon which z = 2 and η = 0. The LPA generally enables one to get a
reliable qualitative picture of the physics as well as a fairly accurate determination of the
static exponent ν. This approximation can be refined by including (field-independent) kinetic
renormalization coefficients Dk and Zk , which allows for non-trivial estimates of η and z. This
approximation is referred to as leading order (LO). Finally, to get more accurate values of the
exponents requires to incorporate the field dependence of the kinetic functions Zk[ψ, ψ̂] and
Dk[ψ, ψ̂]—referred to as next to leading order (NLO)—which becomes much more tedious
numerically.

In order to study a specific model, the generic flow equations ∂sUk, ∂sZk and ∂sDk must
be solved for the functionals Uk,Zk and Dk respecting the symmetries of the problem, starting
at scale 
 from the corresponding microscopic action (6). We focus in the next section on the
DP universality class.
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Table 1. Critical exponents of the DP universality class, from NPRG calculations within different
levels of approximation—LPA, LO in d = 1, 2, 3 [1] and NLO in d = 2, 3 [15]. The last column
gathers the best numerical estimates, ensuing from Monte Carlo (MC) simulations [19, 20] and
series expansions [21].

d LPA [1] LO [1] NLO [15] MC + series [19–21]

3 ν 0.584 0.548 0.59 0.581(5)
β 0.872 0.782 0.83 0.81(1)
z 2 1.909 1.90 1.90(1)

2 ν 0.730 0.623 0.73 0.734(4)
β 0.730 0.597 0.59 0.584(4)
z 2 1.884 1.70 1.76(3)

1 ν 1.056 0.888 1.096 854(4)
β 0.528 0.505 0.276 486(8)
z 2 1.899 1.580 745(10)

4. Directed percolation

The action corresponding to the DP processes (1) can be deduced from (6) and is given by:

S[φ, φ̂] =
∫

x,t

φ̂(∂t − D∇2)φ − λ(1 − φ̂2)φ2 + σ(1 − φ̂)φφ̂ − µ(1 − φ̂)φ. (11)

It can be conveniently rewritten expanding the response field around its stationary solution
φ̂(x, t) = 1 + φ̃(x, t) and rescaling the fields according to φ̃ → √

2λ/σ φ̃ and φ → √
σ/2λφ,

which leads to

SDP[φ, φ̃] =
∫

ddx dt{φ̃[∂t − D∇2 − (σ − µ)]φ +
√

2σλ [φ̃φ2 − φ̃2φ] + λ(φφ̃)2}. (12)

This action turns out to be equivalent to the so-called Reggeon field theory [17], which has
been studied in particle physics since the early seventies [18]. The critical exponents have
been computed in that context to two-loop order. However, the upper critical dimension of
this field theory is dc = 4,1 which is distant from the physical dimensions d = 1 and d = 2.
Moreover, in spite of its simplicity, the DP model has no exact solution in d = 1—at variance
with the Ising model. Thus, the best estimates of the critical exponents of DP rely on numerical
calculations and are given in table 1.

Providing analytical estimates of the DP exponents thus requires a method that is
not confined to the vicinity of a critical dimension. This motivates the use of a non-
perturbative approach—the NPRG—to fulfil this task, since the latter allows us to span
arbitrary dimensions. The generic flow equations introduced in section 3 can be used to
compute the critical exponents of the DP universality class, provided the symmetries of the
DP model are specified. The bare action (12) turns out to be invariant under the change:{

φ(x, t) → −φ̃(x,−t)

φ̃(x, t) → −φ(x,−t),
(13)

which is called the ‘rapidity’ symmetry. The effective potential Uk(ψ, ψ̃) and kinetic
renormalization functions Dk(ψ, ψ̃) and Zk(ψ, ψ̃)—denoted as Xk in the following—must
be invariant under the rapidity transformation (13). This in turn imposes that the generic
term of the Taylor expansion of Xks be of the form aαβ(ψαψ̃β + (−1)α+βψ̃αψβ), which only

1 Note that in this paper, d denotes the dimension of space—i.e. does not include the time direction.
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involves the two invariant combinations x = ψψ̃ and y = ψ − ψ̃ . Thus, parameterizing
the Xks in terms of the invariants x and y ensures that they satisfy the rapidity symmetry
constraints.

The flow equations for Uk,Dk and Zk then have to be solved numerically. One can
integrate the flows with the scale s starting from some initial bare rates [1]. For a fine-
tuned initial mass �, the (dimensionless) effective potential flows to a fixed function, which
corresponds to criticality. The exponents are calculated in the vicinity of this fixed solution.
This procedure has been performed at different levels of approximation, namely the LPA, the
LO and the NLO [1, 15]. The results are displayed in table 1 and show that the estimates
converge fairly rapidly as the approximation is enriched to values in good agreement with the
best numerical estimates.

5. Branching and annihilating random walks

Initially introduced by Bramson and Gray [22], models of BARW can be seen as reaction–
diffusion processes endowed with the generic rules:

A
σm−→ (m + 1)A, kA

λk−→ ∅, (14)

from which is excluded the spontaneous decay A → ∅ (i.e. k > 1). The particles can therefore
only disappear through a k-body annihilation. This restriction has drastic consequences since
at mean-field level, it implies that the system reaches an active state with mean density
ns = [(mσm)/(kλk)]1/(k−1) for any non-zero branching rate σm. A trivial transition occurs
at σm = 0, where the model coincides with the pure annihilation model. The latter is well-
controlled theoretically [11] and it predicts an algebraic decay of the density, which follows
n(t) ∼ t−1/(k−1) above the upper critical dimension dc(k) = 2/(k − 1) and is slowed down
by fluctuations below dc(k) [11]. However, early simulations [23, 24] have evidenced in
low dimensions the existence of absorbing phase transitions at non-vanishing branching rates
in these systems. These transitions have been found to belong to two different universality
classes, depending on the parity of m and k.2 The corresponding models are therefore called
‘odd’ and ‘even’ BARW. Obviously, the effect of fluctuations cannot be neglected in low
dimensions and need to be incorporated in a systematic way. In a seminal paper [12], Cardy
and Täuber have derived the complete field theory for BARW and analysed both ‘odd’ and
‘even’ categories through perturbative RG. Their main results are summarized in the following.
We mention here a straightforward outcome of their analysis, which is that for given k and m,
all the reactions k − 2, k − 4 . . . and m − 2,m − 4 . . . are generated under renormalization,
the lowest m and k processes standing as the most relevant ones. Thus, investigating the

generic processes (A
σ−→ 2A, 2A

λ−→ ∅) and (A
σ−→ 3A, 2A

λ−→ ∅) suffices to describe
the critical behaviour of the odd and even BARW, respectively. In both cases, the general
idea advocated in [12] is to start from the pure pair annihilation process in the vicinity of its
upper critical dimension dc = 2 and to treat perturbatively a small branching rate σ ∼ ε. The
problem is then to determine if fluctuations irremediably destabilize the absorbing state—as
suggested by mean-field—or if they allow for a non-trivial transition to take place. We first
focus on the case of odd BARW.

2 Note that it has been argued in [26] that the parity conservation had no influence on similar reaction–diffusion
systems and that the parity-wise distinction between odd and even BARW processes could be somewhat incidental
(see also [27]).
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Figure 2. Sketch of the transition lines of the BARW A
σ−→ 2A, 2A

λ−→ ∅ computed in [12].
For each dimension, the active phase lies above the transition line and the absorbing phase below.

5.1. Odd BARW: phase diagram

For odd BARW, the spontaneous decay m = −1 turns out to be generated under
renormalization through the combination A → 2A → ∅ at a renormalized rate µR depending
on the bare rates λ and σ . The mass �R = σR − µR hence acquires corrections and the aim
is to determine whether it can become negative for a non-zero bare σ and drive a transition
to an absorbing state. If so, the transition will naturally belong to the DP class since then
the renormalized action is identical to (12). Cardy and Täuber computed �R following two
different procedures which yielded consistent results [12]—that are sketched in figure 2. The
conclusion is as follows: fluctuations are strong enough to induce a non-trivial phase transition
only in d � 2. The transition line is given by σc = D[λ/(2Dπε)]2/ε for d < 2 and is
exponentially suppressed following σc = D exp(−4πD/λ) in d = 2 [12]. The perturbation
theory breaks down above two dimensions. However, since the annihilation rate becomes
irrelevant in d > 2 and since directed random walks (the so-called vicious in the literature
[25]) are known to be recurrent only for transverse dimensions d < 2 (that is the probability
of intersection of two directed paths starting from the origin vanishes above two transverse
dimensions), Cardy and Täuber inferred that an absorbing state could no longer exist above
two spatial dimensions [12]. In other words, their analysis suggests that the mean-field results
are recovered for d > 2, that is the system is always in an active state above two dimensions.

We re-examined odd BARW using NPRG. It should be stressed that critical rates, like
critical temperatures, are non-universal quantities. Since the NPRG formalism allows us to
keep track, through the scale integration of the flow, of the initial microscopic (bare) action, it
enables one to determine the critical rates for which the flow leads to a scale-invariant effective
potential. We thus integrated the flow equations ∂sUk, ∂sZk and ∂sDk at LO for different initial
bare rates in dimensions 1–6 [2].

We also performed extensive numerical simulations, using an efficient algorithm
introduced in [26] to back up our findings. For given values of λ/D, we generated on a lattice

the stochastic time evolution of particles subject to the dynamics A
σ−→ 2A, 2A

λ−→ ∅

and we searched for the critical rates σ/D which yield an algebraic decay of the density—in
dimensions 1–6 [2].

Prior to comparing the obtained ‘discrete’ critical points (λ/D, σ/D) with the ‘analytical’
ones ensuing from NPRG, the latter ones need to be rescaled by dimensional factors (C2−d , C2)

to account for the continuous space limit underlying the field theory [2]. We emphasize that,
however, matching a single point suffices to uniquely fix the value of the C parameter for all
dimensions. Both numerical and (rescaled) analytical phase diagrams are displayed in figure 3
and show a remarkable agreement. Indeed, let us recall that, at variance with universal
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Figure 3. Phase diagrams of the BARW A
σ−→ 2A, 2A

λ−→ ∅ in dimensions 1–6, from [2].
Lines present NPRG results, rescaled as explained in the text. Symbols follow from numerical
simulations. For each dimension, the active phase lies on the left of the transition line and the
absorbing phase on the right.

Figure 4. Evolution of the thresholds (λ/D)th with the dimension, from [2].

quantities such as critical exponents, non-universal ones depend on all irrelevant operators
(and microscopic details) and the accuracy of NPRG results was therefore unexpected.

Let us now analyse these phase diagrams. First, the transition lines of figure 3 are in
accordance with the perturbative results in their region of validity, that is in the vicinity of
the origin. Both numerical and analytical transition lines are indeed quadratic in d = 1 and
exponential in d = 2 [2]. But away from the origin, the phase diagrams we obtained drastically
differ from the perturbative results [12] sketched in figure 2. Indeed, we found a transition
in d = 3 and in fact in all probed dimensions up to d = 6. The inactive phase appears to
emerge only after a finite threshold (λ/D)th which is in essence a non-perturbative feature.
It is indeed out of reach of any perturbative expansion around the origin. Furthermore, the
transition lines seem to undergo a simple drift as the dimension grows. A closer investigation
of the variation of the thresholds with the dimension reveals that they grow linearly with d
(which has been checked up to d = 10) as shown in figure 4. This strongly suggests that an
absorbing DP transition occurs in all finite dimensions, or in other words that the mean-field
result is recovered only in the d → ∞ limit [2].

We emphasize that this study unveils a remarkable instance where fluctuations turn
out to qualitatively invalidate the mean-field and even one-loop phase diagrams. Indeed,
fluctuations not only bring quantitative corrections to the critical rates but build up genuinely
non-perturbative effects that affect the very existence of the transition. We now come to the
case of even BARW and show that non-perturbative features are even more crucial there since
they entirely entail the physics of the model.
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Blue lines: pure annihilation fixed point FA. Red lines: non-perturbative fixed point FPC whose
eigenvalues are both negative for 4

3 < d < 1.3784 . . . and complex-conjugated at larger d (only
the real part is plotted).

5.2. Even BARW: universality class

The models of even BARW have concentrated much attention [12, 23, 27] as they embody the
first example of an absorbing phase transition not belonging to the DP class, but to a new one—
improperly, see 1—called ‘PC’ for parity conserving. For these models, a phase transition
has been observed numerically in one dimension and characterized by non-DP exponents.
To provide an analytical support to these findings, Cardy and Täuber have attempted an RG
treatment of the field theory of even BARW, which writes [12]

S[φ, φ̂] =
∫

x,t

φ̂(∂t − D∇2)φ − λ(1 − φ̂2)φ2 + σ(1 − φ̂2)φφ̂. (15)

Their analysis showed the appearance of a second upper critical dimension dc 	 4/3
below which the branching rate σ becomes irrelevant, allowing for the annihilation fixed point
FA to become stable and possibly root an absorbing state in d = 1. Furthermore, in a direct
calculation in d = 1, Cardy and Täuber [12] managed to identify a combination of σ and λ

that admits a fixed point at one-loop order. However, it yielded poorly determined exponents
and the extension of this calculation to higher orders appeared problematic [12].

We therefore re-analysed the even BARW model by means of NPRG methods [3]. We
once again exploited the generic flow equations derived in section 3, specified for even BARW
theory. The action (15) is Z2 symmetric. The effective potential Uk should hence only depend
on the quadratic invariants ψ2, ψ̂2 and ψ̂ψ . We here consider the LPA, which suffices to
obtain a non-trivial picture of the physics of the model. The effective potential is Taylor
expanded around the stationary solution (ψ̂ = 1, ψ = 0) and truncated at a given power n of
the fields.

Even from the lowest order n = 2 (corresponding to Uk = −λk(1 − ψ̂2)ψ2 + σk(1 −
ψ̂2)ψψ̂), the flow equations for the coupling constants λk and σk exhibit, in addition to
the Gaussian fixed point FG = {σ = 0, λ = 0} and to the pure annihilation fixed point
FA = {σ = 0, λA 
= 0}, a non-perturbative solution FPC = {σPC 
= 0, λPC 
= 0} [3]. The
latter governs an absorbing transition in dimension d < 4/3. It becomes unphysical (with a
negative σPC) and thus plays no role for d > 4/3. Indeed, the stability of FPC and FA can
be read off from figure 5 which displays their eigenvalues. For d > 4/3, the annihilation
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Figure 6. Flow diagram of the lowest-order LPA in d = 1 (arrows represent the RG trajectories
as s is decreased towards the ‘infra-red’, macroscopic limit s → −∞), from [3].

fixed point is the only physical one and it is once unstable (in the σ direction), implying that
the system is always active. When d decreases, σPC approaches zero until FPC crosses FA in
d = 4/3, where they exchange stability. Below d = 4/3, FA is hence stable, controlling the
absorbing phase and FPC acquires an unstable direction, thus driving a phase transition [3].
The corresponding flow diagram is depicted for d = 1 in figure 6.

The critical exponent ν can be determined in the vicinity of FPC and it converges as the
order n of the field truncation is increased to ν = 2.0 ± 0.1, which is already in fair agreement
with Monte Carlo simulations yielding ν = 1.85 ± 0.1. One would then need to go to the next
order in the derivative expansion and include non-trivial kinetic renormalizations analogous
to Zk and Dk to get a determination of the other exponents. We stress that FPC does not
become Gaussian in any dimension and is thus genuinely non-perturbative. This explains why
it cannot be reached via any perturbative expansion.

6. Conclusion and prospects

Through this paper, we have advocated the use of a non-perturbative field-theoretic method,
the NPRG, to investigate non-equilibrium systems. We have highlighted the valuable results
that this method has allowed to provide for various reaction–diffusion processes. Most
importantly, we have unveiled that non-perturbative effects turn out to play a crucial role in
the physics of these models. Indeed, we have first computed the phase diagram of odd BARW
and evidenced the existence of a non-perturbative threshold for the absorbing phase to emerge
above two dimensions. This very threshold explains the failure of perturbative treatments
which incorrectly lead to the conclusion that the transition disappears for d > 2. Furthermore,
we have studied the NPRG flow equations of the even BARW model and found a genuine
non-perturbative fixed point—i.e. non-Gaussian in any dimension—which is responsible for
the PC absorbing phase transition in low dimensions and becomes unphysical above d = 4/3.
It hence provides a theoretical back-up for the numerical results, reproducing on the one hand
the transition observed in d = 1 with a good agreement on the ν exponent and explaining on
the other hand why there is no transition in and above d = 2.

The NPRG appears as an efficient tool to tackle non-equilibrium systems, which opens
many prospects. First, it enables one to investigate critical properties of other reaction–
diffusion processes. For instance, the universality class of the so-called pair contact process
with diffusion model has been the subject of a long-lasting debate [28]. The influence of
quenched disorder in DP models is also of great interest since the latter is suspected to hinder
experimental realizations of this universality class [6]. Beyond the scope of reaction–diffusion
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processes, this technique has been applied to the study of the roughening transition in surface
growth, generically modelled by the notorious Kardar–Parisi–Zhang equation [29]. It has
allowed us to obtain non-trivial results [30] and it would be of utmost interest to push further
the investigation of growth phenomena. The NPRG methods could finally allow one to give
some insights into glassy dynamics.
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Cardy J L and Täuber U C 1998 J. Stat. Phys. 90 1

[13] Wilson K G and Kogut J 1974 Phys. Rep. C 12 75
[14] Tetradis N and Wetterich C 1994 Nucl. Phys. B [FS] 422 541
[15] Canet L 2004 Phys. Ann. Fr. 29
[16] van Wijland F, Oerding K and Hilhorst H J 1998 Physica A 251 179
[17] Cardy J L and Sugar R L 1980 J. Phys. A: Math. Gen. 13 L423
[18] Moshe M 1978 Phys. Rep. C 37 257
[19] Jensen I 1992 Phys. Rev. A 45 R563
[20] Voigt C A and Ziff R M 1997 Phys. Rev. E 56 R6241
[21] Jensen I 1999 J. Phys. A: Math. Gen. 32 5233
[22] Bramson M and Gray L 1985 Z. Wahrsch. verw. Gebiete 68 447
[23] Grassberger P, Krause F and von der Twer T 1984 J. Phys. A: Math. Gen. 17 L105

Jensen I 1994 Phys. Rev. E 50 3623
ben Avraham D, Leyvraz F and Redner S 1994 Phys. Rev. E 50 1843

[24] Takayasu H and Tretyakov A Y 1992 Phys. Rev. Lett. 68 3060
Jensen I 1993 J. Phys. A: Math. Gen. 26 3921

[25] Fisher M E 1984 J. Stat. Phys. 34 665
Essam J W and Guttmann A J 1995 Phys. Rev. E 52 5849
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